设x Ax的向量范数为∥.∥2 证明:它对应的算子范数是证 对任意矩阵A 存在酉矩阵u V 使得矩阵

大学本科 已帮助: 时间:2024-11-11 19:01:15

设x,Ax的向量范数为∥.∥2,证明:它对应的算子范数是证 对任意矩阵A,存在酉矩阵u,V,使得矩阵A的奇异值分解为A=UDV.其中σ1,σ2,…,σn是矩阵A的奇异值,D=diag(σ1,σ2,…,σn).
请帮忙给出正确答案和分析,谢谢!

难度:⭐⭐⭐

题库:大学本科,理学,数学类

标签:算子,矩阵,奇异

相似问题