设m n是正整数 则反常积分的收敛性A.仅与m值有关.B.仅与n值有关.C.与m n值都有关.D.与

大学本科 已帮助: 时间:2024-11-09 16:06:42

设m,n是正整数,则反常积分
的收敛性
A.仅与m值有关.
B.仅与n值有关.
C.与m,n值都有关.
D.与m,n值都无关.
请帮忙给出正确答案和分析,谢谢!

难度:⭐⭐⭐

题库:大学本科,理学,数学类

标签:反常,正确答案,请帮忙

参考解答

用户头像

432***101

2024-11-09 16:06:42

正确答案:D
[分析x=0、1为瑕点,插入分点,利用比较判别法判断两个无界函数反常积分的敛散性.[详解。对I1,因为,且对任意正整数m,n,有,由比较判别法的极限形式知,无论正整数m,n取何值,反常积分I1是收敛的.对I2,由比较判别法知无论正整数m,n取何值反常积分I2是收敛的,因此应选(D).[评注根据考试大纲的要求,此题属超纲范围.

上一篇 设f(x) g(x)在[a b]上连续 且满足 ∫axf(t)dt≥∫axg(t)dt x∈[a b

下一篇 设f(x)在[0 1]上连续 在(0 1)内可导 且满足 证明:存在一点ξ∈(0 1) 使得f(ξ)

相似问题