下列说法中正确的是( ).A.若f(x)在闭区间I可积 则它在 上一定存在原函数B.若f(x)在闭区
下列说法中正确的是( ).
A.若f(x)在闭区间I可积,则它在,上一定存在原函数
B.若f(x)在闭区间I上存在原函数,则它在I上必可积
C.若f(x)在闭区间I可导,则它一定在,上既可积又存在原函数
D.若f(x)在闭区间,上除x0点外都连续,且x0是f(x)的第一类间断点,则它在,一定存在原函数.
请帮忙给出正确答案和分析,谢谢!
参考解答
正确答案:C
由f(x)在闭区间,上可导知它在闭区间,上连续,而函数在闭区间上连续既是可积的充分条件又是原函数存在的充分条件,故C成立.
相似问题
设f(x)满足 当x→0时 Incosx2是比xnf(x)高阶的无穷小量 而xnf(x)是比esin
设f(x)满足,当x→0时,Incosx2是比xnf(x)高阶的无穷小量,而xnf(x)是比esin2x一1高阶的无穷小,则正整数n等于( ).A.1B.2C.3D.4请帮忙给出正确答案和分析,谢谢!
设设方程exy+Y2=cosx确定y的x的函数 则设方程exy+Y2=cosx确定y的x的函数 则请
设设方程exy+Y2=cosx确定y的x的函数,则设方程exy+Y2=cosx确定y的x的函数,则请帮忙给出正确答案和分析,谢谢!
设f(x)=x2+㏑x 求使得f〞(x)>0的x的取值范围.请帮忙给出正确答案和分析 谢谢!
设f(x)=x2+㏑x,求使得f〞(x)>0的x的取值范围.请帮忙给出正确答案和分析,谢谢!
已知函数f(x)具有任意阶导数 且f(x)=[f(x)]2 则当n为大于2的正整数时 f(x)的n阶
已知函数f(x)具有任意阶导数,且f(x)=[f(x)]2,则当n为大于2的正整数时,f(x)的n阶导数f"(x)是( ).A.n![f(x)]n+1B.n[f(x)]n+1C.[f(x)]2nD.n![f(x)]
用指定的变量替换求请帮忙给出正确答案和分析 谢谢!
用指定的变量替换求请帮忙给出正确答案和分析,谢谢!
